Nutrition for oral health throughout childhood and adolescence

Teresa A. Marshall, PhD, RD/LD
teresa-marshall@iowa.edu
4/30/21
Nutrition for oral and systemic health throughout childhood and adolescence

Teresa A. Marshall has no conflicts of interest with any organizations 4/30/21
Presentation organization

→ Identify characteristics of the normal pediatric diet
→ Review associations between diet/nutrition
 • Caries
 • Periodontal disease
 • Oral cancer
 • Dental erosion
→ Describe strategies to screen and assess the pediatric diet for oral health risk
Purpose of childhood….

→ To grow…physically, cognitively, emotionally…
→ To achieve one’s full ‘innate’ potential…
→ To live at full capacity as an adult…
 • Healthy
 • Happy
 • Productive
 • Function physically, cognitively and emotionally

→ Dependent on access to adequate and appropriate ‘nutrition’ throughout childhood and adolescence
Pediatric diet and nutrition

Identify characteristics of the normal pediatric diet
Objectives of the pediatric diet

→ To provide adequate nutrients for growth, maintenance and repair
 • Addresses the physical and cognitive growth

→ To limit substances associated with disease and/or ill health
 • Addresses the healthy condition

→ Within an environment that fosters mental well being
 • Addresses the emotional growth

→ Presentation today – identify the diet that meets these goals
 • With special emphasis on oral health
Diet and nutrition

- Diet – combination of foods consumed
- Foods – compounds that we consume
- Nutrients – substances within foods that support growth, maintenance and repair
Nutrient Requirements

Intakes defined by Dietary Reference Intakes (USA)

- Vitamins & minerals
 - Range of acceptable intake
- Carbohydrate, fat and protein – energy containing
 - Protein – to provide adequate essential amino acids
 - Fat – to provide adequate essential fatty acids
 - Balance – to meet, but not exceed energy requirements
- Water
 - Range of acceptable Intake

Delivered by foods – MyPlate –

- Quantities of foods balanced to provide adequate nutrients
 - Without excessive substances associated with disease
Failure to achieve desired nutrient intakes

→ Malnutrition
 • Deficiency of nutrients/energy
 • Excess of nutrients/energy
 • Imbalance of nutrients
Malnutrition etiology

→ Primary:
 • Inadequate food intake (deficiencies)
 • Excessive food intake (toxicities)
 • Inappropriate food choices (deficiency/toxicity blend)

→ Secondary:
 • Altered physiological process resulting in disconnect between intake and tissue level
Malnutrition etiology beyond diet…. nutritional programming

→ The known
 • Early nutrition ‘programs’ lifelong metabolic responses
 • Obesity
 • Type 2 diabetes
 • Cardiovascular disease
 • Mechanisms
 • Epigenetics
 • Early inflammatory response
 • Adipocyte dysfunction
 • Intestinal microbial composition
 • Taste preferences

• Early sweet exposure increases sweet preference

• First 1000 days…proper nutrition is critical for brain development
Feeding practices

- Early infancy
 - Tongue thrust
 - Sucking reflex
 - Oral motor coordination
- Transition to solid foods
- Transition from bottle to cup
- Acceptance of novel foods
- Independence struggles
 - Toddler
 - Adolescent
Food choices

- Food Groups
- Texture
- Processing
Meal structure

→ Importance
 • Adequate intake of desirable foods
 • Too frequent
 • Too limited – complicates having a healthy relationship with food

→ Rationale
 • Stomach size
 • Growth rate

→ Ideal…balance between adequate intake and maintaining an appetite
 • 3 meals and 1-3 snacks
 • Caloric beverages at meal/snack time
Healthy food environment

- Balance of food groups meeting energy requirements
- Access
 - Food security
- Pleasant surroundings
- Power struggles
 - Ellyn Satter’s book
Summary of normal pediatric nutrition

- Appropriate foods to meet nutrient requirements
- Delivered via structured meal patterns
 - Support growth
 - Limit disease – including caries
- In a healthy environment
Diet, nutrition & oral health

Review relationships between diet, nutrition, and oral health
Caries - Periodontal Disease - Oral Cancer – Dental Erosion
Cariology 101: Classic Keyes model

• Interaction:

 Oral bacteria Tooth Carbohydrate
Contemporary carbohydrates

- Microflora
- Improved oral hygiene
- Fluoride therapy
- Both

Carbohydrates
Contemporary cariogenic carbohydrates

→ Modified starches
 - Oxidized, hydrolyzed by acid, gelatinized
 - Chemical structure is changed
 - Effectively reduces the number of steps before the “starch” is cariogenic

→ Oligosaccharides
 - Byproduct of starch breakdown
 - Short chain polysaccharide (3-10 glucose units)
 - Maltodextrin

→ High fructose corn syrup
 - Produced from cornstarch
 - Contains fructose, glucose and oligosaccharides

→ Sugars
 - Sucrose, maltose, lactose and fructose
Dietary Patterns Low-Income African-American Children

ABSTRACT: Objective: To evaluate the relationship of dietary patterns and oral health outcomes in African-American children. We aimed to describe the dietary patterns, nutrient intake, and overall diet quality and correlate them with caries experience.

Research Design and Methods: We conducted a cross-sectional study of 7-year-old children from low-income African-American families. Diet was assessed using a validated FFQ, and caries experience was assessed using the DMFS index.

Results: We identified three distinct dietary patterns: A Healthy Eating Pattern, a Sweet and Fatty Pattern, and a Snack Pattern. The Healthy Eating Pattern was associated with lower caries experience compared to the Sweet and Fatty Pattern. The Snack Pattern was associated with higher caries experience.

Conclusion: Dietary patterns, particularly those associated with higher intake of sugars and fats, are associated with higher caries experience in African-American children. These findings highlight the importance of promoting healthier dietary patterns to improve oral health outcomes.
Caries at 17 years: lifelong impact of beverages – fluoride - toothbrushing

<table>
<thead>
<tr>
<th>Variable of Interest</th>
<th>Estimated multiplicative effect of exposure (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>0.87 (0.69, 1.11)</td>
<td>0.254</td>
</tr>
<tr>
<td>Juice</td>
<td>0.47 (0.27, 0.83)</td>
<td>0.009</td>
</tr>
<tr>
<td>SSB</td>
<td>1.42 (1.05, 1.92)</td>
<td>0.025</td>
</tr>
<tr>
<td>Water/SFB</td>
<td>0.71 (0.54, 0.93)</td>
<td>0.014</td>
</tr>
<tr>
<td>Total fluoride, excluding SSB fluoride</td>
<td>1.10 (1.01, 1.20)</td>
<td>0.029</td>
</tr>
<tr>
<td>Toothbrushing</td>
<td>0.57 (0.38, 0.86)</td>
<td>0.008</td>
</tr>
<tr>
<td>Female Indicator</td>
<td>1.55 (1.11, 2.18)</td>
<td>0.011</td>
</tr>
<tr>
<td>Baseline SES – Low</td>
<td>1 (Ref.)</td>
<td>-</td>
</tr>
<tr>
<td>Baseline SES – Middle</td>
<td>0.82 (0.53, 1.27)</td>
<td>0.366</td>
</tr>
<tr>
<td>Baseline SES - High</td>
<td>1.13 (0.73, 1.76)</td>
<td>0.582</td>
</tr>
</tbody>
</table>
Exposure

- Frequency
 - Number of times consumed per day

- Length of each consumption period

- Total exposure = # exposures \times length of exposure
Frequency and caries experience

<table>
<thead>
<tr>
<th>Year</th>
<th>Meal</th>
<th>Snack</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.13</td>
<td>2.31</td>
<td>2.03</td>
</tr>
<tr>
<td>(N = 616)</td>
<td>(0.49, 2.60)</td>
<td>(1.08, 4.94)</td>
<td>(0.95, 4.31)</td>
</tr>
<tr>
<td>2</td>
<td>0.58</td>
<td>2.58</td>
<td>2.69</td>
</tr>
<tr>
<td>(N = 527)</td>
<td>(0.29, 1.19)</td>
<td>(1.23, 5.42)</td>
<td>(1.30, 5.58)</td>
</tr>
<tr>
<td>3</td>
<td>1.06</td>
<td>2.39</td>
<td>2.61</td>
</tr>
<tr>
<td>(N = 441)</td>
<td>(0.44, 2.56)</td>
<td>(1.13, 5.06)</td>
<td>(1.23, 5.54)</td>
</tr>
<tr>
<td>4</td>
<td>1.38</td>
<td>4.26</td>
<td>4.62</td>
</tr>
<tr>
<td>(N = 411)</td>
<td>(0.55, 3.50)</td>
<td>(1.58, 11.48)</td>
<td>(1.72, 12.39)</td>
</tr>
<tr>
<td>5</td>
<td>0.90</td>
<td>1.78</td>
<td>1.38</td>
</tr>
<tr>
<td>(N = 413)</td>
<td>(0.40, 2.00)</td>
<td>(0.81, 3.91)</td>
<td>(0.66, 2.90)</td>
</tr>
<tr>
<td>1-5</td>
<td>0.97</td>
<td>2.24</td>
<td>2.26</td>
</tr>
<tr>
<td>(N = 398)</td>
<td>(0.51, 1.85)</td>
<td>(1.03, 4.86)</td>
<td>(1.06, 4.82)</td>
</tr>
</tbody>
</table>

*Adjusted for age at dental exam and total fluoride intake

* P < 0.05
** P < 0.01
Frequency and early childhood caries

b. Food and beverage frequency

% Children by number of consumption intakes

Food or beverage consumption intakes per day

- Caries-free (n = 38)
- S-ECC (n = 68)
Defined vs. unstructured meal patterns

Contemporary tooth

TOOTH

Carbohydrates

Microflora

Improved oral hygiene
‘Marginal’ tooth

→ Developmental tooth defects
 • Pre/postnatal insults impacting tooth formation
 • Location and severity of defect consistent with timing and nature of insult
 • Defect might increase susceptibility to bacterial colonization and/or acid attack

→ Enamel hypoplasia
 • Type of developmental defect
 • Hypoplastic or hypomineralized enamel
 • Risk factors include malnutrition
 • Vitamin D deficiencies during tooth development
Prenatal vitamin D & ECC

Purpose: to investigate association between maternal vitamin D levels during pregnancy and child caries within one year

Population: Economically disadvantaged pregnant women & offspring
 • Winnipeg, Canada

Results:
 • Mothers with infants having ECC (cavitated) had significantly lower serum 25OHD serum concentrations (p<0.05)
 • Mothers of infants having ECC & white spot lesions tended towards lower serum 25OHD concentrations (p = 0.18)

Conclusion: Low prenatal vitamin D might increase risk of ECC

Prenatal vitamin D & ECC

Schroth et al; Pediatrics. 2014;133; e1277-1284.
Malnutrition & S-ECC

Purpose: to describe nutritional status of children with S-ECC

Population: Children with S-ECC aged 2-6 y in Toronto
 • No control group

Results: Children with severe ECC
 • 17% of children were malnourished
 • 4% low body mass index (BMI)
 • 24% low body fat
 • 16% low serum albumin
 • 80% low serum ferritin, 24% iron depletion, 6% iron deficiency, 11% iron deficiency anemia

Conclusion: Markers of malnutrition present in children with S-ECC

Healthy Eating Index & ECC

→ Purpose: to describe association between diet quality and ECC
→ Population: NHANES 2-5 y children
→ Results:
 • Lower diet quality associated with increased risk of S-ECC (adjusted P = 0.012)
 • Top tertile was 44% less likely to have S-ECC than bottom (P = 0.009)
→ Conclusion: Poor diet quality associated with S-ECC

Life course events and ECC

→ Purpose: Explore ‘life course’ risk factors for ECC
→ Population: Cohort recruited at 8 months and followed till 32 months; China
→ Results:
 • Final model: severity of ECC associated with
 • SES status
 • Hypoplasia
 • Low height (marker for stunting – chronic PEM)
 • Visible plaque
 • S mutans
→ Conclusions: Early life factors, including malnutrition, increase risk of ECC
Periodontal disease - etiology

- Complex chronic inflammatory disease
- Interaction of bacterial infection, the immune system and host’s immune response contribute to the disease process
Periodontitis & nutrition

- Host tissue
- Immune system
- Obesity
Malnutrition: protein energy malnutrition

- Increase risk of bacterial colonization by pathogenic bacteria
- Decreased ability of immune system to fight infection
- Increased susceptibility of unhealthy tissue to insults
- Impaired response of tissue to injury
Individual nutrients

→ Vitamin C
 - Decreased serum vitamin C associated with increased risk of periodontitis in both smokers and nonsmokers

→ Calcium
 - Low dietary intakes (below recommendations) have been associated with increased risk of periodontal disease
Overall diet quality

Purpose: To examine cross-sectional association between diet quality and severe periodontal disease

Population: 13,920 US Hispanic/Latinos
 • Aged 18-74 years

Results: Next slide

Conclusion: Higher diet quality was associated with lower odds of severe periodontal disease
Overall diet quality

Higher AHEI scores = higher diet quality; lowest quartile of scores represents group with lowest diet quality.
Obesity

- Presence of excess body fat
 - >22% in young men, >32% in young women

- BMI (adult; kg/m²)
 - Underweight: < 19
 - Expected: 19-25
 - Overweight: >25-30
 - Obese: >30-40
 - Morbid obesity: >40 (about twice ideal weight)

- Distribution of body fat (android vs. gynoid)
 - Abdominal/visceral fat associated with greater risk of metabolic disease than subcutaneous fat
Dysfunctional adipocytes

Stenkula and Erlanson-Albertsson, Am J Physiol Regul Integr Comp Physiol; 2018.
Adiposity and periodontal disease

→ Purpose: to investigate cross-sectional associations between obesity and periodontitis
→ Population: nonsmoking 13-21 yo participating in HNANES
→ Independent variables
 • Weight (subcutaneous and visceral adipose tissue)
 • Waist circumference (visceral adipose tissue)
 • Skinfold tissue (subcutaneous adipose tissue)
Adiposity and periodontal disease

Results:

• Weight
 • Individuals with periodontal disease weighted 7kg more than those without
 • Among 17-21 yo
 • 1 kg increase in weight was associated with a 6% increase in periodontal disease

• Waist circumference
 • Individuals with periodontal disease had a waist circumference 8 cm greater than those without
 • Among 17-21 yo
 • 1 cm waist increase associated with 5% increased risk of periodontal disease

• Skinfolds not associated with periodontal disease

Conclusions

• Slight association between adiposity and periodontal disease, particularly central adiposity

Malnutrition: obesity

- Adipocyte size is associated with inflammation
- Weight is associated with periodontal disease
- Waist circumference is associated with periodontal disease

• In adults and adolescents
Oral cancer

- Malnutrition is associated with increased risk of cancer
 - Limited fruit and vegetable intakes associated with oral cancer

- Smokers typically have lower serum vitamin C levels than nonsmokers
 - Antioxidant
 - Need more dietary vitamin C to maintain serum levels
Dental erosion

Dissolution with subsequent removal of minerals from enamel and/or dentin during exposure to acids

• Extrinsic acids
 • Dietary origin
 • Environmental origin (i.e., pool water)
• Intrinsic acids
 • Gastrointestinal acids
Erosion screen

Figure: Dietary screening and counseling for patients with erosion. Sources: Keesing and colleagues,5 Guarda,70 and Kusani and colleagues.71
Dental erosion

Table 2. Eating behaviors influencing erosion potential.*

<table>
<thead>
<tr>
<th>EATING BEHAVIORS PROLONGING EXPOSURE TIME</th>
<th>EATING BEHAVIORS REDUCING EXPOSURE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent intake</td>
<td>Infrequent intake</td>
</tr>
<tr>
<td>Eating and drinking times longer than 30 minutes</td>
<td>Eating and drinking times shorter than 30 minutes</td>
</tr>
<tr>
<td>Holding beverages or foods</td>
<td>Direct chewing and swallowing</td>
</tr>
<tr>
<td>Pocketing foods</td>
<td>No pocketing of foods</td>
</tr>
<tr>
<td>Single erosive foods</td>
<td>Meals of mixed foods</td>
</tr>
<tr>
<td>Swishing beverages</td>
<td>No swishing of beverages</td>
</tr>
</tbody>
</table>

*Sources: Hasselkvist and colleagues,1 Lussi and Jaeggi,4 Reddy and colleagues,19 Johansson and colleagues,20 Waterhouse and colleagues,21 Bartlett and colleagues,22 and Rios and colleagues.23
Eating disorders: caries risk and erosion

→ Increased caries risk
 • Behaviors prolonging exposure
 • Ultra-processed foods
 • Bulimia nervosa
 • Binge-eating disorder
 • Compulsive overeating
 • Night eating syndrome
 • Sleep disorder with eating issues

→ Increased erosion risk
 • Exposure to gastric acid
 • Bulimia nervosa
 • Rumination
 • Purging disorder
Summary of diet, nutrition & oral health

- Caries
- Periodontal disease
- Oral cancer

Increased exposure to fermentable carbohydrates

Increased energy intake (i.e., obesity)

- Caries
- Periodontal disease
- Oral cancer

Inadequate energy intake (i.e., PEM)

Inadequate nutrient intakes

- Oral cancer
- Periodontal disease
- Oral cancer
Oral disease prevention

Carious vs. non-carious diets

Toxic food environment
Caries etiology

→ 3 opportunities for intervention

- Fermentable carbohydrates
- Frequency of exposure
- Nutritional adequacy

Consistent Message
What is a carious diet?

→ Combination of foods that when consumed
 • Provides fermentable carbohydrates
 • At frequent intervals
 • In sufficient quantities
 • To support acid production by oral bacteria

→ *Does not* provide adequate nutrients to support
 • Normal development of tooth structure
 • Production of sufficient, normal saliva and/or
 • Maintenance of normal immune responses
What is a non-cariogenic diet?

→ Combination of foods that when consumed
 • Provides fermentable carbohydrates
 • At infrequent intervals and in
 • Insufficient quantities
 • To support acid production by oral bacteria

→ Provides adequate protein, energy and nutrients to support normal growth and tissue maintenance
What does a non-cariogenic diet look like?

- MyPlate: https://www.myplate.gov/
- Structured meal patterns
 - 3 meals and 2-3 snacks

- Same diet is consistent with periodontal disease prevention, oral cancer disease prevention and systemic health
So why are we where we’re at?

→ We know what a healthy diet is
 • Health promotion
 • Disease prevention

→ Achieving that diet is the problem…at least as we become more ‘westernized’ throughout the world.

→ Why????
“Toxic” food environment

Environment characterized by

- Highly processed foods
 - High energy
 - High fat
 - High sugar
- Readily accessible foods
 - 24/7 availability
 - Fast food establishments
- Heavily marketed foods
 - Shelf location
 - Targeted advertisements
- Limited physical activity
Social determinants of health
Diet counseling

Screening
Assessment
Assessment strategies

→ **Screen** every patient

→ **Assess** those identified at risk for caries or other oral disease

 • Obvious disease – target assessment towards current disease

 • ‘Healthy’ – target assessment towards prevention

→ **Refer** patients with dietary/systemic health red flags
Goals of screening process

→ Identify patients at risk due to marginal dietary habits
 • Caries risk
 • Periodontal disease risk
 • Oral cancer risk
 • Erosion risk
Screening process

→ Frequency
 • Eats more than 3 meals per day?
 • Eats more than 3 snacks per day?
 • Meals/snacks are not structured (on and off grazing)?
→ Drinks sugared beverages (juice, soft drinks, energy drinks) daily?
 • Drinks more than 8 oz sugared beverages (or juice) daily?
 • Drinks beverages for more than 30 minutes daily?
→ Compliance with MyPlate?
 • All food groups in adequate quantities
 • All food groups consumed daily; inadequate quantities
 • Missing food groups
Goals of assessment process

→ Identify dietary habits that increase disease risk
 • Educate as to rationale for ‘better’ dietary habits
 • Provide guidelines to achieve ‘better’ dietary habits
 • Focus recommendations
 • Patient motivation
 • Reasonable changes

→ Practical perspective
 • Easy for clinician
 • Efficient for practice
 • Patient has to remember conversation when they get home
Chairside diet assessment of caries risk

- Defines key dietary areas for caries risk
- Presents concept of anticipatory guidance
 - Recognize potential obstacles and provide advice before obstacles become a problem
 - No one food is consumed in isolation
 - What are ripple effects of consumption
 - What are ripple effects of lack of consumption
- Examples
Assessment queries

<table>
<thead>
<tr>
<th>Number</th>
<th>Question</th>
<th>Rationale</th>
<th>Potential Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Are you following a special diet?</td>
<td>Background for diet-related recommendations</td>
<td>Diet-related caries risk recommendations should be consistent with systemic dietary recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify caries risk associated with special diet</td>
<td>Address food choices and eating behaviors associated with caries risk</td>
</tr>
<tr>
<td>2</td>
<td>What changes have you made to your diet during the past 6 months to a year?</td>
<td>Dietary changes might have implications for caries risk</td>
<td>Reinforce dietary changes that decrease caries risk and/or improve overall diet quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Address dietary changes that increase caries risk and/or decrease overall diet quality</td>
</tr>
</tbody>
</table>
Screening & assessment outcome

- Identification of problem
- Etiology of problem
- Counseling within scope of practice
- Referral
 - Appropriate referral
Etiology of problem

→ Knowledge
 • Nutrition basics
 • Meal planning

→ Skillset
 • Food preparation
 • Budgeting – WIC, SNAP $$

→ Resources
 • Transportation to grocery…affordable grocery
 • Adequate housing…fridge and cooking resources
 • $$ to purchase foods

→ Capacity
 • Ability to do more
Diet therapy & disease counseling summary

- Evaluate the situation
- Identify the problem
- Understand rationale for problem
- Provide guidance to address the root of problem
 - Counseling
- Refer if appropriate

Social determinants of health
Toxic food environment
United health care approach
A healthy pediatric diet

- Provide adequate nutrients for growth, maintenance and repair
 - Addresses the physical and cognitive
- Limit substances associated with disease and/or ill health
 - Addresses the healthy condition
- Exist within an environment that fosters mental well being
 - Addresses the emotional growth
Thank you…

Questions